If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+2=290
We move all terms to the left:
10n^2+2-(290)=0
We add all the numbers together, and all the variables
10n^2-288=0
a = 10; b = 0; c = -288;
Δ = b2-4ac
Δ = 02-4·10·(-288)
Δ = 11520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11520}=\sqrt{2304*5}=\sqrt{2304}*\sqrt{5}=48\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{5}}{2*10}=\frac{0-48\sqrt{5}}{20} =-\frac{48\sqrt{5}}{20} =-\frac{12\sqrt{5}}{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{5}}{2*10}=\frac{0+48\sqrt{5}}{20} =\frac{48\sqrt{5}}{20} =\frac{12\sqrt{5}}{5} $
| -5f=-60 | | 10=h/6 | | 89=p+-24 | | b-23=-30 | | 3x=1/2(x+5) | | d−382=330 | | p−529=219 | | -7q=-28 | | 3v=99 | | 6x-3x-1=20 | | 2(1.5m+3)+4.5m=21 | | -7=s/8 | | 3/4x+4-7x=4 | | 60x(x)=150 | | v−54=6 | | j−1=2 | | -7(4-g)-3(g-3)=-22 | | 3/4x+1=x | | 1-d=36 | | 36=d−1 | | 4(6+5a)-2(-7+2a)=-8a+5a | | -9=w/7 | | 7.8=n−2.7 | | 7(2p+3)-8=-29 | | 6(y+2)=-4=-10 | | -7-5(1+4x)=-8-7(-2+2x) | | 38+x=-13 | | 2x+1-4=+2x-3 | | -7x-2(-5x+4)=-2(4+x) | | -4t=-5t−4 | | 26=8x+1-13x | | -9(-2x-6)=18 |